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Matching and alignment

Jennifer Bellik, Junko Ito, Nick Kalivoda, and Armin Mester

15.1 Introduction

Phonological phrases tend to mirror syntactic phrases, but sometimes there are
mismatches. For example, in a well-known mismatch in Japanese first pointed
out by Kubozono (1989), a uniformly left-branching four-word syntactic phrase
is rebracketed into a symmetrically branching phonological phrase in (1).

(1) [XP [XP [XP A B] C] D] → (φ (φ A B) (φ C D) )

We are assuming here the theory of recursive phrasing argued for in Ito andMester
(2012), where the phonological phrase (φ) is recursively deployed, and the mini-
mal φ is the domain of accent cumulativity, and any φ the domain of initial rise
and downstep. The recursive theory is superior to traditional models with binary
category distinctions: minor phrase vs. major phrase in McCawley (1968) and
Kubozono (1989), among others, or the roughly equivalent intermediate phrase
vs. accentual phrase distinction in Pierrehumbert and Beckman (1988). Ito and
Mester (2012: 289–94) show that the nonrecursive models provide both too much
and too little structure to account for the empirical facts in Japanese.

The rebracketing in (1) has been the subject of several Optimality-Theoretic
analyses (Ishihara 2014; Ito and Mester 2013; Kalivoda 2018; Selkirk 2011). What
has been less discussed and analyzed is the fact that other three- and four-word
syntactic structures do not show phonological rebracketing (Kubozono 1989;
Shinya et al. 2004), so that, e.g., a uniformly right-branching four-word syntactic
phrase is mapped to a matching prosodic structure in (2).

(2) [XP A [XP B [XP C D]]] → (φ A (φ B (φ C D) ) )

A general feature of previous studies is that they have often not considered the full
range of possible prosodic parses, owing to the impossibility of manually gener-
ating and evaluating numerous tree structures. In this chapter, we reanalyze the
Japanese pattern of prosodic matches and mismatches for all three- and four-
word syntactic inputs, taking into account all possible prosodic parses of each
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string of terminals. This was made possible through automatic candidate genera-
tion and evaluation by the SPOTApp, developed as part of the larger SPOT project
(Syntax-Prosody in Optimality Theory, https://spot.sites.ucsc.edu/).

SPOT is a collaborative research project in the Linguistics Department at the
University of California, Santa Cruz, funded by National Science Foundation
Grant #1749368, which aims to develop new tools for rigorously investigating
the mapping from syntactic to prosodic structure. The group is developing the
SPOT App, an application which performs automatic candidate generation and
constraint evaluation over prosodic parses for work in Optimality Theory, in par-
ticular, Match Theory and Alignment Theory. This open-source application is
accessible through the project website, and can also be downloaded from Github
(https://github.com/syntax-prosody-ot).

Here, we present a new discovery concerning how to analyze the above
well-known syntax–prosody mismatch in Japanese using Optimality Theoretic
constraints—namely, that when the full set of syntactic inputs and possible
prosodic outputs is considered, Match Theory (Selkirk 2011) and Align The-
ory (Selkirk 1986, 1996; Truckenbrodt 1999) are each insufficient, and must
be combined in order to capture the Japanese pattern. In a system containing
Match Theory’s symmetrical constraints as the only syntax–prosody mapping
constraints, there is no way to distinguish between the uniformly left-branching
syntax that needs to be rebracketed in the prosodic output, and the uniformly
right-branching syntax that must be matched in the prosodic output. Edge-based
Align constraints can successfully distinguish those two syntactic inputs, so
adding them solves the problem. However, the Align constraints cannot cor-
rectly predict all the Japanese syntax–prosody mappings when they are the only
mapping constraints in the system. Align constraints encounter a problem when
mixed branching syntactic trees such as [A[[BC]D]] are considered; they cannot
favor the correct matching prosody (A((BC)D)) over the incorrectly rebrack-
eted ((A(BC))D). When both Match and Align constraints are included in the
system, all of the correct mappings are selected as optimal. Thus, Japanese phono-
logical phrasing shows us that Match constraints cannot entirely supplant Align
constraints, nor can Align constraints do all the work of Match constraints.
This point is of some theoretical importance because Match Theory has often
been portrayed (Selkirk 2011; Elfner 2012, etc.) as fully supplanting its predecessor
Alignment Theory in syntax–prosody mapping.

15.2 Japanese phrasing

In this chapter, we adopt a view of phonology on which a syntactic tree structure is
mapped onto a prosodic tree composed of purely prosodic elements.The latter tree
is the domain of phonological processes, which have no direct access to the syntax.

https://spot.sites.ucsc.edu/
https://github.com/syntax-prosody-ot
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That is, we assume the indirect reference approach of Selkirk (1986), Nespor and
Vogel (1986), and others. One significant consequence of this approach is that it
allows for mismatches between syntactic and prosodic structure; as independent
entities, the constituent structures of the syntactic and prosodic structures need
not coincide perfectly. The syntax-to-prosody mapping in (1)—the focus of this
chapter—is such a case.

According to the prosodic hierarchy theory adopted here, while syntactic struc-
tures are composed of heads (X0) and phrases (XP), prosodic trees are made of
distinct prosodic constituents: prosodic word (ω), phonological phrase (φ), and
intonational phrase (ι). The grammar of the syntax-phonology interface includes
constraints responsible for mapping an input syntactic structure onto an output
prosodic structure.

Kubozono (1988, 1989, 1992, 1993) presents phonetic data showing that phono-
logical phrasing in Tokyo Japanese is sensitive to syntactic structure. The begin-
ning of a phonological phrase in Tokyo Japanese is marked with a pitch rise. The
branching XPs in the syntactic structures on the left in (3) are produced with pitch
rises that are aligned with their left edges “(φ,” indicating that they are matched
by corresponding phonological phrases. For example, the left-branching three-
member structure in (3a) is produced with a pitch rise only on the first word
naomi-no, since this is the only word that is at the left edge of a syntactic phrase
(two syntactic phrases, in fact). On the other hand, in the right-branching three-
member structure (3b), there are rises on the first and second words, naomi-no
and marui, which both occur at the left edge of syntactic phrases.1

(3) a. [[naomi-no ane-no] yunomi] → (φ (φ naomi-no ane-no) yunomi)
Naomi-gen sister-gen teacup
‘Naomi’s sister’s teacup’

b. [naomi-no [marui yunomi]] → (φ naomi-no (φ marui yunomi))
Naomi-gen round teacup
‘Naomi’s round teacup’

For presentational purposes, the representations here and below exclude one-
word syntactic phrases, which, when unaccented, are not mapped to phonological
phrases because Binarity dominates Match-XP (Ito and Mester 2013: 29). This
is equivalent to saying that a non-branchingXPwith only one phonologically overt
terminal X0 is invisible to the phonology, whose attention will be focused on X0.2

1 Since there are cues in Japanese only for left edges of phonological phrases, not for right edges, an
alternative structure is (A B C) with no internal bracketing (see Selkirk 2011 for discussion). Match
Theory resolves this indeterminacy in a general way, by always giving priority to exactly matching
structures—here, ((A B) C)—ceteris paribus, i.e., as long as this is not forestalled by dominant and
conflicting markedness constraints.

2 In this, our analysis resembles Bennett, Elfner, and McCloskey (2016), who state that when two
syntactic projections of different categories dominate the same set of terminals, as in a structure like
[XP X0], the phonology will not produce a non-branching structure like (φ (ω X0)).



OUP UNCORRECTED PROOF – SECONDPROOFS, Mon. Mar 14 2022, INTEGRA

460 jennifer bellik, junko ito, nick kalivoda, and armin mester

Whenwe turn to four-member structures, we encounter the contrastmentioned
in the introduction. A strictly right-branching four-member structure gets faith-
fully mapped onto an isomorphic right-branching prosodic structure (4a), but
a strictly left-branching structure gets rebracketed into a balanced prosodic tree
(4b).

(4) a. [naomi-no [marui [omoi yunomi]]] → (φ naomi-no (φ marui
Naomi-gen round heavy teacup (φ omoi yunomi)))
‘Naomi’s round heavy teacup’

b. [[[naomi-no ane-no] yunomi-no] iro] → (φ (φ naomi-no ane-no)
Naomi-gen sister-gen teacup-gen color (φ yunomi-no iro))
‘the color of the teacup of the sister of Naomi’

The remaining four-member configurations in (5) shows that they are faithfully
mapped into isomorphic prosodic structures.

(5) a. [[naomi-no ane-no] [marui yunomi]] → (φ (φ naomi-no ane-no)
Naomi-gen sister-gen round teacup (φ marui yunomi))
‘Naomi’s sister’s round teacup’

b. [[naomi-no [ue-no ane-no]] yunomi] → (φ (φ naomi-no (φ ue-no
Naomi-gen upper-gen sister-gen teacup ane-no)) yunomi)
‘Naomi’s eldest sister’s teacup’

c. [naomi-no [[ume-no iro-no] yunomi]] → (φ naomi-no (φ (φ ume-
Naomi-gen plum-gen color-gen teacup no iro-no) yunomi))
‘Naomi’s plum-colored teacup’

All noninitial rises in (3)–(5) are downstepped (see Kubozono 1988, etc.), indicat-
ing that there is some domain that spans the entire phrase.

The examples above are all lexically unaccented words. Because of high-ranking
Accent-As-Head (see Ito andMester 2013), lexically accented words are individ-
ually mapped to minimal phonological phrases, as shown in (6).

(6) a. [náoko-no [nagái [aói erı́maki]]] → (φ (φ náoko-no) (φ (φ nagái)
Naoko-gen long blue muffler (φ (φ aói) (φ erı́maki))))
‘Naoko’s long blue muffler’

b. [[[náoko-no áni-no] erı́maki-no] iromóyoo]
Naoko-gen brother-gen muffler-gen color pattern

→ (φ (φ (φ náoko-no) (φ áni-no))
(φ (φ erı́maki-no)(φ iromóyoo)))

‘The color pattern of the muffler of the brother of Naoko’

As the hierarchical tree structures in (7) clearly illustrate, there is an extra (min-
imal) level of φ-phrasing for accented word combinations (7b). However, the
nonminimal phrasings of the accented word combinations (7b) are identical to the
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unaccented word combinations (7a), including the difference between the faithful
right-branching structure and the rebracketed left-branching structure. This also
holds for cases with a combination of accented and unaccented words.

(7) a.  Unaccented ω’s

A B C D A B C D

A B C D A B C D

=(4a) =(4b) =(6a) =(6b)
b.  Accented ω’s

φ

φ

φ φ φ

φ φ φ φ φ φ φ φ

φ φ

φ

φ

φφ φ

An important additional factor in accented right-branching structures such as (6b)
is Kubozono’s metrical boost (Kubozono 1989: 53–8) which “raises pitch contours
whenever right branching is involved,” here the beginning of the second and third
words. In our terms, the locus of metrical boost is the beginning of two φ’s.

Concerning the syntax–prosody mappings depicted in (3)–(6), we can see
that every XP’s left edge is mapped to the left edge of a phonological phrase
(φ) in the prosody. Furthermore, every φ in (3), (4a), (5), and (6a) corresponds
to an XP in the syntax. However, when the uniformly left-branching syntax is
pronounced, the XP naomi-no ane-no yunomi-no in (4b) or náoko-no áni-no
erı́maki-no in (6b) is not mapped to a φ. Instead, an unexpected rise occurs on
yunomi-no and a larger-than-expected rise (i.e., Kubozono’s metrical boost) oc-
curs on erı́maki-no, indicating that the output of the phonology includes a φ that
has no XP-correspondent. Our goal in the remainder of this chapter is to use Op-
timality Theory to capture this match/mismatch pattern, in which the uniformly
left-branching syntax is rebracketed into a balanced prosodic tree, while all other
input syntactic structures receive a matching prosodic parse. We will demonstrate
that key syntax–prosodymapping constraints from bothMatchTheory andAlign-
ment Theory are necessary to describe the specific mapping between syntax and
prosody observed in Japanese.

15.3 Considering all candidates

For a candidate to be optimal under a ranking in OT, it must be better than all
of its competitors, which are defined by the generator function Gen (Prince and
Smolensky 2004). If a candidate admitted by Gen is omitted from consideration,
serious errors can occur (Bane and Riggle 2012). In the worst case, the allegedly
optimal candidate may prove to be harmonically bounded (suboptimal under ev-
ery possible ranking) when a forgotten candidate is included. It is therefore crucial
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to know the full set of candidates admitted by Gen, and how they performon every
constraint.

In syntax–prosody mapping, the full candidate sets admitted by Gen are often
quite large, making it necessary to automate their generation. We do so using the
SPOT application. Suppose that a prosodic tree consists of an intonational phrase
ι (the root node), one or more phonological phrases (the non-terminal nodes,
possibly recursive), and a series of prosodic words ω (the terminal string). Even as-
suming that words are never reordered, inserted, or deleted, the number of parses
for an input containing n words rises rapidly as n increases, as shown in (8).

(8) Number of candidates under SPOT’s GenEX3

174609

18853

2121

Words in input

2533351

1 2 3 4 5 6 7

N
um

be
r o

f c
an

di
da

te
s

An example of candidate omission in the study of Japanese phrasing comes from
Selkirk (2011), who attributes the rebracketing in (1) to a ranking of three con-
straints: BinMax(φ,ω)≫Match(XP,φ), Match(φ,XP), defined here as shown in
(9).⁴

3 We subscript Gen here with “Ex” for “exhaustivity” because this function does not allow prosodic
level-skipping. When nonexhaustive parsing is allowed, the number of parses is even greater. SPOT
includes GenEX and nonexhaustive Gen, among other versions.

⁴ Throughout this section, the input contains a one-word XP [A], as in Ito and Mester (2013)
and Ishihara (2014). It thereby differs from Selkirk’s (2011: 469) representation in her example (37),
and our representation in (1) and in the following sections, non-branching syntactic phrases are ab-
stracted away from altogether. The presence of [A] does not affect the structure of the argument, or its
implications for later sections.
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(9) a. BinMax(φ,ω): Assign one violation for every node of category φ in
the prosodic tree that dominates more than two nodes of category ω.

b. Match(XP,φ): Assign one violation for every node of category XP in
the syntactic tree such that there is no node of category φ in the prosodic
tree that dominates all and only the same terminal nodes as XP.

c. Match(φ,XP): Assign one violation for every node of category φ
in the prosodic tree such that there is no node of category XP in the
syntactic tree that dominates all and only the same terminal nodes as φ.

In this and all following tableaux, we partially adopt the comparative tableau for-
mat of Prince (2002). The optimal output is shown in row (10a), indicated by
“→”. Nonoptimal outputs are shown in subsequent rows. Violation counts for con-
straints are indicated for the optimum with integers. For nonoptimal candidates,
the violation count is shown in subscript after a “W”, “L”, or “e”. A “W” in a cell
means that the constraint in that column favors the intended winner over the in-
tended loser; an “L” means that the constraint favors the intended loser over the
intended winner; and an “e” means that the constraint penalizes the winner and
the loser equally. Filled with W’s, L’s, and e’s, each loser row constitutes an Ele-
mentary Ranking Condition (ERC). All columns are separated by solid lines, which
should not be taken to indicate ranking. The ranking (which is not always a total
order on the constraint set) can be read off the comparative tableaux in the follow-
ing way: in each loser row (ERC), there must be some W that precedes every L.
This is because for each winner-loser pair, there must be some constraint favoring
the winner that dominates every constraint favoring the loser. For example, row
(10b) containsW for BinMax(φ,ω), L forMatch(XP,φ), and L forMatch(φ,XP),
indicating that BinMax(φ,ω) favors the winner (10a) over the loser (10b), while
the two Match constraints favor the loser (10b) over the winner (10a). From this
row, we conclude that BinMax(φ,ω) dominates both Match constraints. From
this winner-loser pair, we cannot conclude anything about the relative ranking
of Match(XP,φ) and Match(φ,XP). For an extensive explanation of compara-
tive tableaux and Elementary Ranking Conditions, we refer the reader to Prince
(2002).

(10) Selkirk’s (2011) analysis of Japanese rebracketing

[[[[A] B] C] D] BinMax(φ,ω) Match(XP,φ) Match(φ,XP)
a.→ ((A B) (C D)) 1 2 1
b. ((((A) B) C) D) W2 L0 L0

With just candidates (10a, b), the analysis is correct; when BinMax(φ,ω) dom-
inates both Match constraints, the rebracketing candidate beats the matching
candidate. However, Ishihara (2014) discovered that the single additional candi-
date (11c) admitted by Gen leads to harmonic bounding of the desired winner.
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While neither (11b) nor (11c) alone individually bounds (11a), the two collectively
bound it.

(11) The Recursivity Problem (Ishihara 2014)

[[[[A] B] C] D] BinMax(φ,ω) Match(XP,φ) Match(φ,XP)
a.→ ((A B) (C D)) 1 2 1
b. ((((A) B) C) D) W2 L0 L0
c. (A B) (C D) L W e0 3 1

Candidates (11a) and (11c) differ only in that the former wraps the two mini-
mal phrases (AB) and (CD) in a maximal phrase, while the latter does not, which
means that (CD) is not downstepped with respect to (AB) (see Ishihara 2014).
With the candidate and constraint sets in (11), the Japanese optimum (11a) is har-
monically bounded. Although BinMax(φ,ω) favors Japanese (11a) over matching
(11b), and Match(XP,φ) favors Japanese (11a) over nonrecursive (11c), there is
no ranking of these constraints under which (11a) is optimal. When one of the
Match constraints dominates BinMax, the perfectly matching (11b) is optimal,
and when BinMax dominates both of the Match constraints, the nonrecursive
(11c) is optimal. Returning to the notion of the ERC, we note that no arrangement
of the constraint columns in (11) results in there being a W before every L in both
rows (11b) and (11c), indicating that no ranking of these constraints produces the
desired optima.

For (11a) to win out over nonrecursive (11c) in Japanese, an additional
constraint is needed. Ishihara (2014) proposes a new Match constraint,
Match(XPmax,φmax), also called MatchMax, which is violated when a maximal
lexical XP in the input does not have a matching maximal φ in the output. In the
case at hand, MatchMax is violated when the maximal XP [ABCD] does not
have a matching maximal φ (ABCD). Adding MatchMax to the constraint set,
and keeping the candidate set the same as in (11), the Japanese candidate is no
longer harmonically bounded.

(12) Solution to the Recursivity Problem (Ishihara 2014)

[[[[A] B] C] D] MatchMax BinMax(φ,ω) Match(XP,φ) Match(φ,XP)
a. ((A B) (C D)) 0 1 2 1

W2 L0 L0b. ((((A) B) C) D) e
c. (A B) (C D) W1 L0 W3 e1
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Under the ranking MatchMax ≫ BinMax ≫ Match-XP, Match-φ, the
Japanese candidate (12a) is optimal, given this candidate set. It would appear,
therefore, that Ishihara (2014) has solved the candidate-omission problem in
Selkirk (2011).

However, there are still further additional candidates that must be considered.
Using SPOT to generate all possible candidates admitted by Gen, Kalivoda (2018)
discovered that MatchMax does not save the Japanese candidate from harmonic
bounding when the full set is considered. A single additional candidate, (13d),
which Kalivoda (2018) calls the squishing candidate, harmonically bounds the
desired (13a).

(13) The Squishing Problem (Kalivoda 2018)

[[[[A] B] C] D] MatchMax BinMax(φ,ω) Match(XP,φ) Match(φ,XP)
a.→ ((A B) (C D)) 0 1 2 1

W2 L0 L0
1 L0 W3 e1

b. ((((A) B) C) D) e
c. (A B) (C D) W
d. ((A B) C D) e e1 e2 L0

Japanese (13a) and the squishing candidate (13d) differ only in that while the for-
mer includes a φ (CD), the latter does not, instead placing these words directly
under the maximal φ. They tie on MatchMax, BinMax, and Match-XP, but
Match-φ favors (13d) over (13a), since there is no XP [CD] in the input. So with
the full candidate set admitted by Gen, it is necessary to either add another con-
straint to Con that favors (13a) over (13d), or to pursue another constraint set
entirely.

Kalivoda (2018) shows that adding one more constraint solves this prob-
lem. Since (14a) is perfectly binary-branching, while in (14d) the maximal φ
is ternary-branching, the constraint BinMax(φ,branches) does the trick. Unlike
BinMax(φ,ω), which is violated by every φ containing more than two prosodic
words, BinMax(φ,branches) is violated by every φ that immediately dominates
more than two nodes (see Elfner 2012 for an argument that BinMax(φ,branches)
is active in Irish).

(14) Solution to the Squishing Problem (Kalivoda 2018)

[[[[A] B] C] D] (φ
BinMax
,branches)

Match
Max

BinMax
(φ,ω)

Match
(XP,φ)

Match
(φ,XP)

a.→ ((A B) (C D)) 0 0 1 2 1
b. ((((A) B) C) D) e e W2 L0 L0
c. (A B) (C D) e W1 L0 W3 e1
d. ((A B) C D) W1 e e1 e2 L0
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Finally, in the full candidate set we also find a candidate just like Japanese
[[[[A]B]C]D] → ((AB)(CD)), but where the XP [A] has a matching φ:
[[[[A]B]C]D] → (((A)B)(CD)). This candidate outperforms the desired winner
on Match(XP,φ), incurring one violation for failing to match the XP [ABC],
while the Japanese candidate fails to match both [ABC] and [A]. Thus, as a final
amendment to Con, we need to include BinMin(φ,ω), a constraint penalizing
one-word phrases (see Selkirk 2011, among others).⁵

(15) Solution to the Unary Problem

[[[[A] B] C] D] (
BinMin
φ,ω)

BinMax
(φ,branches)

Match
Max

BinMax
(φ,ω)

Match
(XP,φ)

Match
(φ,XP)

a.→ ((A B) (C D)) 0 0 0 1 2 1
b. ((((A) B) C) D) W1 e0 e0 W2 L0 L0
c. (A B) (C D) e0 e0 W1 L0 W3 e1
d. ((A B) C D) e0 W1 e0 e1 e2 L0
e. (((A) B) (C D)) W1 e0 e0 e1 L1 e1

The above tableau shows that for (15a) to beat (15e), BinMin(φ,ω) must dominate
Match(XP,φ). This ranking blocks the faithful mapping of XP [A] to φ (A). The
need for BinMin(φ,ω) was not lost on Selkirk (2011); Ishihara (2014); or Kalivoda
(2018), but neither it nor candidate (15e) were included in Selkirk and Ishihara’s
original discussions of this topic.

To sum up, Selkirk (2011) proposed that Japanese ranks BinMax(φ,ω) above
Match(XP,φ) and Match(φ,XP), but Ishihara (2014) showed the insufficiency
of this analysis by adding a neglected nonrecursive candidate. With an expanded
candidate set, Ishihara proposed retaining Selkirk’s ranking, by adding a new con-
straint MatchMax, which in Japanese must dominate BinMax(φ,ω). Kalivoda
(2018), considering the full set of 253 four-word candidates generated using
SPOT’s GenEX, found that yet another neglected candidate, the squishing can-
didate, harmonically bounds the desired winner in Ishihara’s system. Kalivoda
showed that the analysis could be rescued by ranking another constraint, Bin-
Max(φ,branches), above Match(φ,XP) in Japanese. Kalivoda (2018) also noted
the need for BinMin(φ,ω) (or BinMin(φ,branches)) to solve the Unary Problem
left implicit in previous work.

This recap of the progression from Selkirk (2011) to Ishihara (2014) to Kalivoda
(2018) serves two purposes here. First, it underscores the importance of generating
the full candidate set so that no such problems go unnoticed. This consideration
alone is enough to justify using the SPOT application to check syntax–prosody
analyses, as we do for every analysis presented in the remainder of the chapter.

⁵ Since the terminal nodes of every prosodic output under consideration are prosodic words, and no
φ has another φ as its sole child, BinMin(φ,ω) is in fact equivalent to BinMin(φ,branches). The choice
here is therefore arbitrary.
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Second, the analysis of rebracketing in Japanese left-branching syntactic struc-
tures shows what constraints we will need to employ in our analysis of the
broader range of syntactic structures in (3)–(5). These include both versions
of maximal binarity, BinMax(φ,branches) and BinMax(φ,ω), as well as Ishi-
hara’s MatchMax. For expository purposes, we will in fact build MatchMax
into Gen as an inviolable condition on output representations, allowing us to
exclude it from Con. We will also simplify by ignoring unary branching XPs
in the syntactic inputs (see footnote 2), but do not remove BinMin(φ,ω) from
Con.

Having established the importance of considering all candidates for strictly
left-branching cases, we now turn to an analysis of all other syntactic structures
containing three and four words.

15.4 Matchplus Align

Wenowpresent anOT system called S.MspAsp⁶ (named for its constraints “Match
syntax→ prosody” and “Align syntax→ prosody”) that accounts for the following
mappings, which are schematized versions of the data in Section 15.2.⁷

(16) Syntax–prosody mappings in Japanese
a. Three words

i. [[A B] C] → ((A B) C)
ii. [A [B C]] → (A (B C))

b. Four words
i. [[[A B] C] D] → ((A B) (C D))
ii. [[A [B C]] D] → ((A (B C)) D)
iii. [[A B] [C D]] → ((A B) (C D))
iv. [A [[B C] D]] → (A ((B C) D))
v. [A [B [C D]]] → (A (B (C D)))

An OT system S is a pair (Gen.S, Con.S) (Prince and Smolensky 2004; Alber et al.
2016; Merchant and Prince 2021). Gen.S defines the candidate sets (csets) of S,
composed of input-output pairs, and Con.S is the constraint set of S. We define
S.MspAsp as follows:

⁶ The system S.MspAsp is available on the SPOT interface. It is labeled “Japanese ✓: Match SP,
Align SP” in the dropdown menu of the section “Built-in systems.”

⁷ A violation tableau and factorial typology for this and every other system mentioned in the
chapter is provided in the supplementary OTWorkplace file hosted at <https://spot.sites.ucsc.edu/oup-
supplementary-material-bellik-ito-kalivoda-and-mester/>

https://spot.sites.ucsc.edu/oup-supplementary-material-bellik-ito-kalivoda-and-mester/
https://spot.sites.ucsc.edu/oup-supplementary-material-bellik-ito-kalivoda-and-mester/
Kubozono
取り消し線

Kubozono
挿入テキスト
"(" should be replaced with "⟨", which is Unicode 27E8.

Kubozono
取り消し線

Kubozono
挿入テキスト
")" should be replaced with "⟩", which is Unicode 27E9. 
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(17) The system S.MspAsp [S(ystem).M(atch) s(yntax)p(rosody)A(lign)s(yntax)
p(rosody)]
a. Gen.MspAsp⁸

i. Inputs: Syntactic trees with three or four terminal nodes, where ev-
ery non-terminal node is a binary-branching XP and every terminal
node is an X0, as shown in (16).

ii. Outputs: For a syntactic input S, every prosodic tree P with non-
terminal nodes of category φ and terminal nodes of category ω,
such that the terminal nodes in S stand in a one-to-one corre-
spondence relation with the terminal nodes in P, with linear order
preserved.

b. Con.MspAsp
i. Syntax-to-prosody mapping constraints
• Match(XP,φ): Assign one violation for every node of category XP

in the syntactic tree such that there is no node of category φ in the
prosodic tree that dominates all and only the same terminal nodes
as XP.

• AlignL(XP,φ): Assign one violation for every node of category XP
in the syntactic tree whose left edge is not aligned with the left edge
of a node of category φ in the prosodic tree.

• AlignR(XP,φ): Assign one violation for every node of category XP
in the syntactic tree whose right edge is not aligned with the right
edge of a node of category φ in the prosodic tree.

ii. Markedness constraints on surface prosody
• BinMin(φ,ω): Assign one violation for every node of category φ in

the prosodic tree that contains fewer than two nodes of category ω.
• BinMax(φ,ω): Assign one violation for every node of category φ in

the prosodic tree that dominates more than two nodes of category
ω.

• BinMax(φ,branches): Assign one violation for every node of
category φ in the prosodic tree that has more than two children.

⁸ The output generator from (17a.ii) is SPOT’s GenRecRoot, which is stricter than GenEx. Both ver-
sions of Gen enforce Exhaustivity, but while GenEx allows multiple maximal φ’s to be dominated
by the root ι, GenRecRoot labels the root of every candidate with the same category as the intermediate
nodes—here a φ, rather than an ι. This is essentially equivalent to maintaining an ι root but requir-
ing every prosodic tree to contain a single maximal φ immediately dominated by the root. Although
there are fewer candidates than in GenEx, the candidate set still grows as a function of the number of
terminals in the input: 1, 4, 24, 176, 1440, 12608, 115584, …
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Ishihara’s (2014) MatchMax is not included in (17b), because Gen.MspAsp is
defined such that MatchMax is never violated by any candidate. As discussed in
Section 15.3, MatchMax is crucial when it is not built into Gen.⁹

With S.MspAsp defined as in (17), we can now examine its factorial typol-
ogy. We have calculated it by generating candidates and evaluating constraints
using SPOT, and importing the resulting violation tableau into OTWorkplace
(Prince et al. 2020), which calculated the typology. OTWorkplace is an Excel-
based software that takes OT tableaux and computes rankings and factorial
typologies.1⁰Although there are 6! = 720 linear orders of the constraints in (17b),
the typology contains only fourteen languages. This is possible because languages
are defined extensionally as sets of optimal candidates (input-output mappings),
andmultiple total orderings of the constraint set give rise to identical sets of optima
(Alber et al. 2016).

Certain candidate sets in S.MspAsp contain only one possible optimum, i.e., a
single candidate that wins under every ranking. These are the three-word [A[BC]]
and [[AB]C] as well as the four-word [[AB][CD]]. These three candidates are
alwaysmapped to the perfectly isomorphic (A(BC)), ((AB)C) and ((AB)(CD)), re-
spectively.11 The following table presents the factorial typology of S.MspAsp with
these three candidate sets omitted for space reasons.

(18) Factorial typology of S.MspAsp

[[[AB] C]D] [[A [BC]]D] [A [[BC]D]] [A [B [CD]]]
L.1 ((A B) (C D)) ((A B) (C D)) ((A B) (C D)) ((A B) (C D))
L.2 ((A B) ((C) D)) ((A B) ((C) D)) ((A B) ((C) D)) ((A B) (C D))
L.3 (((A B) C) D) ((A (B C)) D) (A ((B C) D)) ((A B) (C D))
L.4 (((A B) C) D) (A (B C) D) (A (B C) D) ((A B) (C D))
L.5 ((A B) (C D)) (A (B C) D) (A (B C) D) ((A B) (C D))
L.6 ((A B) ((C) D)) (A (B C) D) (A (B C) D) ((A B) (C D))
L.7 ((A B) (C D)) ((A (B)) (C D)) ((A (B)) (C D)) ((A (B)) (C D))
L.8 ((A B) ((C) D)) ((A (B)) ((C) D)) ((A (B)) ((C) D)) ((A (B)) (C D))
L.9 ((A B) (C D)) (A (B C) D) (A (B C) D) ((A (B)) (C D))
L.10 ((A B) ((C) D)) (A (B C) D) (A (B C) D) ((A (B)) (C D))
L.11 (((A B) C) D) ((A (B C)) D) (A ((B C) D)) (A (B (C D)))
L.12 ((AB) (CD)) ((A (BC))D) (A ((BC)D)) (A (B (CD)))
L.13 (((A B) C) D) (A (B C) D) (A (B C) D) (A (B (C D)))
L.14 ((A B) (C D)) (A (B C) D) (A (B C) D) (A (B (C D)))

⁹ Match(φ,XP), included in Section 15.3, is also excluded from Con.MspAsp. A related system
exactly like s.MspAsp but with Match(φ,XP) added to Con, shown in (29) in Section 15.7, results in a
factorial typology with six more languages than in the factorial typology of S.MspAsp. Both typologies
contain a language with the Japanese pattern laid out in (16).

1⁰ It can also assign constraint violations in a tableau, but we carried out this function with SPOT
before importing the resulting violation tableau into OTWorkplace.

11 Whether these inputs should map to the same outputs in every natural language is a question we
leave for future research. While these mappings are universal within S.MspAsp, they do not hold in
closely related systems with other commonly assumed constraints and representational conditions.
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It goes beyond the scope of this chapter to comment on the properties of all these
grammars. Language 12 in (18) shows the same mappings as Japanese, laid out
in (16). It matches everything but the strictly left-branching [[[AB]C]D], which it
maps to ((AB)(CD)).The grammar of this language is given in the followingHasse
diagram.

(19)
AlignL(XP, φ) BinMin(φ,ω) BinMax(φ,branches)

BinMax(φ,ω)

Match(XP,φ) AlignR(XP,φ)

All of the information in (19) can be ascertained from examining the Support for
L.12, provided by OTWorkplace. A support is a comparative tableau (Prince 2002)
that contains ERCs specifying all domination relationships among constraints in
a given grammar.

(20) Support for L.12

Input
Winner

~ Loser
AlignL
(XP,φ)

BinMin
(φ,ω)

BinMax
(φ,branches)

BinMax
(φ,ω)

Match
(XP,φ)

AlignR
(XP, φ)

~ ((AB)(CD)) W L W

b. [A[B[CD]]]
(A(B(CD)))

~((A(B))(CD)) W L W

~ (A(BC)D) W L W

a. [A[B[CD]]]
(A(B(CD)))

c. [A[[BC]D]]
(A((BC)D))

d. [[[AB]C]D]
((AB)(CD))

~ (((AB)C)D) W L L

Each row in (20) is an ERC. For the support to be valid for L.12, each row
must contain a W-cell to the left of all L-cells. Working our way from bottom to
top, we learn from (20d) that BinMax(φ,ω) must dominate Match(XP,φ) and
AlignR(XP,φ). The winner, [[[AB]C]D] → ((AB)(CD)), violates BinMax(φ,ω)
once, since the maximal φ contains four words, while the loser, [[[AB]C]D] →
(((AB)C)D), violates it twice: once for the four-word φ (ABCD), and once for the
three-word φ (ABC).The “W” in the BinMax(φ,ω) column of row (20d) expresses
this preference.

The L-cells in row (20d) come from the fact that the winning mismatch-
ing candidate [[[AB]C]D] → ((AB)(CD)) is less well matched, and has less
right-edge alignment, than the perfectly matching loser. The winner violates
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Match(XP,φ) once, since it fails to match the XP containing A, B, C. It also vi-
olates AlignR(XP,φ) once, since the word C is at the right edge of an XP in the
input, but not at the right edge of a φ in the output. The loser has no violations for
these mapping constraints.

Moving up a row, (20c) reveals that either BinMax(φ,branches) or Match
(XP,φ) must dominate BinMax(φ,ω) to derive the mapping [A[[BC]D]] →
(A((BC)D)). Unlike row (20d), this ERC contains a disjunction. The intended
winner (A((BC)D)) will prevail as long as either of the two W-cells precedes the
lone L-cell. However, row (20d) has already established the ranking BinMax(φ,ω)
≫ Match(XP,φ). So taken together, rows (20c, d) establish the ranking Bin-
Max(φ,branches) ≫ BinMax(φ,ω). The “W” in the BinMax(φ,branches) cell of
row (20c) comes from the fact that the winner, with output structure (A((BC)D)),
is perfectly binary-branching, while the loser, with output structure (A(BC)D),
contains a ternary-branching φ, namely (AφD), and thereby incurs one violation
of branch-counting binarity.

Like row (20c), row (20b) contains two W-cells and one L-cell; BinMin(φ,ω)
and Match(XP,φ) favor the winner [A[B[CD]]] → (A(B(CD))), an isomorphic
mapping, while BinMax(φ,ω) favors the loser ((A(B))(CD)). The winner vio-
lates neither BinMin(φ,ω) nor Match(XP,φ), while the loser incurs a violation
of BinMin(φ,ω) for the phrase (φ B), and a violation of Match(XP,φ) for failing
to match the XP containing B, C, D. BinMax(φ,ω), by contrast, favors the loser in
(20b) for exactly the same reason that it favored the winner in (20d): the rebrack-
eted output contains one φ dominating more than two ωs, while the matching
output contains two that do this. Although this ERC is disjunctive, together with
the ERC in row (20d) it shows that BinMin(φ,ω)must dominate BinMax(φ,ω), by
the same logic discussed for rows (20c, d).That is,Match(XP,φ) cannot be the rea-
son for choosing the perfectly matching winner in (20b), because the rebracketing
in (20d) shows that BinMax(φ,ω) dominates Match(XP,φ).

Finally, row (20a) shows that AlignL(XP,φ) must dominate BinMax(φ,ω) to
derive the mapping [A[B[CD]]] → (A(B(CD))). The fully right-branching input
has three non-coinciding left XP-edges to align to left φ-edges, and although the
loser’s rebracketing is preferred by BinMax(φ,ω), it fails to align the XP left edge
that precedes B.

15.5 PureMatch

It was shown in Section 15.2 that Match Theory, appropriately formulated,
gives rise to the prosodic rebracketing seen in Japanese four-word left-branching
phrases. However, the constraint ranking that does so incorrectly predicts that
right-branching four-word phrases, i.e., [A[B[CD]]], will have the prosodic
structure ((AB)(CD)). To see why, consider the system S.Msp.Mps, which
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only contains Match constraints (Match syntax→prosody, Match prosody→
syntax).12

(21) The system S.MspMps
a. Gen.MspMps = Gen.MspAsp, defined in (17a)
b. Con.MspMsp

i. Mapping constraints
• Match(XP,φ), defined in (17b.i)
• Match(φ,XP): Assign one violation for every node of cat-

egory φ in the prosodic tree such that there is no node of
category XP in the syntactic tree that dominates all and
only the same terminal nodes as φ.

ii. Markedness constraints on surface prosody, defined in
(17b.ii)
• BinMin(φ,ω)
• BinMax(φ,ω)
• BinMax(φ,branches)

The candidate space in S.MspMps is identical to that in S.MspAps. The con-
straint set differs in that the prosody-to-syntax mapping constraint Match(φ,XP)
replaces the two alignment constraints. Match(XP,φ) and the three binarity
constraints remain.

The factorial typology of S.MspMps contains four languages. In two of these,
left-branching [[[AB]C]D] maps to ((AB)(CD)) as in Japanese. This occurs when
BinMax(φ,branches) ≫ Match(φ,XP) and BinMax(φ,ω) ≫ Match(XP,φ),
Match(φ,XP). But in these same two languages, the four-word right-branching
syntax maps to the same prosody. There is no ranking under which [[[AB]C]D]
→ ((AB)(CD)) is optimal and [A[B[CD]]] → ((AB)(CD)) is nonoptimal, or vice
versa.This problem—call it the Asymmetry Problem—is revealed by the following
two elementary ranking conditions:

(22) The Asymmetry Problem

Winner
~ Loser

Match
(XP,φ)

Match
(φ,XP)

BinMax
(φ,ω)

BinMin
(φ,ω)

BinMax
(φ,branches)

L L W e e

W L e e

~ (((AB)C)D)
a. [[[AB]C]D] ((AB)(CD))

. [A[B[CD]]] (A(B(CD)))
~ ((AB)(CD))

b W

Input

In (22a), BinMax(φ,ω) favors the mismatching winner, which violates it once,
while the perfectly matching loser violates it twice. In (22b), Match(XP,φ) and
Match(φ,XP) both prefer the perfectly matching winner over the mismatching

12 The system S.MspMps is available on the SPOT interface. It is labeled “Japanese ×: Match only”
in the section “Built-in systems.”
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loser, while BinMax(φ,ω) prefers the loser. Since all of the prosodic structures
in (22) are perfectly binary-branching, the other two binarity constraints have no
preferences. No ranking of the constraints in (22) yields the desired optima in both
(22a) and (22b).

The Asymmetry Problem is deeply intractable in pure Match Theory (MT). No
constraint from theMT literature, as far as we know, can resolve the contradiction.
The problem is rooted in the symmetric nature of MT constraints. Constraints
of the form Match(α,β) are direction-insensitive, and by definition they cannot
detect the difference between a mapping α→β and a mapping α'→β', where α is
the mirror image of α' and β the mirror image of β'.13

Of course, MT does not just consist of mapping constraints, but also has
markedness constraints. In the markedness arena, there is more leeway to define a
constraint assigning different violation counts to a prosodic tree α and its mirror
image α'. Some markedness constraints, like EqualSisters (Myrberg 2013), are
like Match in that they cannot distinguish α and α'. But others are asymmetrical,
notably StrongStart.

(23) StrongStart (Selkirk 2011; Elfner 2012):
Assign one violation for every node in the prosodic tree whose leftmost
daughter is lower on the prosodic hierarchy than its sister immediately
to its right.

Concretely, StrongStart is violated when a prosodic constituent π begins with
(π ω φ …). The initial ω in π is “weak” compared to the φ to its right, and
StrongStart demands that the initial node of π be comparatively “strong,” as in
(π φ φ …), (π φ ω …), or (π ω ω …). Thus, the strictly right-branching (A(B(CD)))
violates StrongStart twice, once for (A φ) and once for (B φ), while strictly
left-branching (((AB)C)D) violates it zero times.

But although StrongStart is asymmetry-sensitive, it does not solve the Asym-
metry Problem. Consider the pair of candidates from (22), but with StrongStart
added to the constraint set.1⁴

13 By “mirror image,” we mean “mirror image in terms of bracketing.” The labels of the terminal
nodes are irrelevant.

1⁴ Thebranch-binarity constraints are omitted since theywere shown in (22) not to prefer thewinner
or loser on either line.
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(24) The Asymmetry Problem and StrongStart

Input Winner
~ Loser

Strong
Start

Match
(XP,φ)

Match
(φ,XP)

BinMax
(φ,ω)

~ (((AB)C)D) e L L Wa. [[[AB]C]D] ((AB)(CD))

b. [A[B[CD]]] (A(B(CD)))
~ ((AB)(CD)) L W W L

StrongStart has no preference regarding the choice in (24a). Both ((AB)(CD))
and (((AB)C)D) satisfy it perfectly, since neither contains a phrase (φ ω φ …).
Thus, the ERC in (24a) asserts that BinMax(φ,ω) must dominate the two Match
constraints. In (24b), StrongStart favors the loser. The winner, (A(B(CD))), vi-
olates StrongStart twice: once for (A φ), and once for (B φ). The ERC in (24b)
therefore states that either Match(XP,φ) or Match(φ,XP) must dominate both
StrongStart and BinMax(φ,ω). The ERCs are still contradictory, as in (22), so
the Asymmetry Problem remains.

Since StrongStart favors rebracketing the strictly right-branching
[A[B[CD]]] instead of left-branching [[[AB]C]D], we might wonder whether a
reverse constraint StrongEnd would not solve the problem.

(25) StrongEnd (reverse of Elfner’s 2012 StrongStart; to be rejected)
Assign one violation for every node in the prosodic tree whose rightmost
daughter is lower on the prosodic hierarchy than its sister immediately to
its left.

But adding this constraint to Con.MspMps does not solve the Asymmetry Prob-
lem either, as shown in (26). (As in (24), BinMax(φ,branches) is omitted because
each winner and loser under consideration satisfies it perfectly.)

(26) The Asymmetry Problem and StrongEnd

Input Winner
~ Loser

Strong
End

Match
(XP,φ)

Match
(φ,XP)

BinMax
(φ,ω)

~ (((AB)C)D) W L L Wa. [[[AB]C]D] ((AB)(CD))

b. [[A[BC]]D]
((A(BC))D)

~ ((AB)(CD)) L W W L

While StrongEnd favors rebracketing in (26a), it also incorrectly does so in the
mixed-branching (26b). For rebracketing to occur in (26a), either StrongEnd
or BinMax(φ,ω) must dominate both Match(XP,φ) and Match(φ,XP). But for
matching to occur in (26b), either Match(XP,φ) or Match(φ,XP) must domi-
nate both StrongEnd and BinMax(φ,ω). StrongEnd does not yield the Japanese
pattern. The failure of StrongEnd is a welcome result, since, as pointed out in
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Ito and Mester (2019a), a constraint that directly strengthens the end of prosodic
units runs afoul of the evidence from phonetics and psycholinguistics that has
accumulated over the years since Beckman (1997), Smith (2005b), etc.

15.6 PureAlign

Since the Asymmetry Problem cannot be solved using constraints from the liter-
ature on Match Theory, and Match(XP,φ) does not dominate any constraints in
L.12 of S.MspAsp, one might attempt to dispense with Match altogether. How-
ever, this turns out not to work either. Consider a final system, S.AspAps, defined
as follows:
(27) The system S.AspAps

a. Gen.AspAps = Gen.MspAsp, defined in (17a)
b. Con.AspAps

i. Syntax-to-prosody mapping constraints
• AlignL(XP,φ), defined in (17b.i)
• AlignR(XP,φ), defined in (17b.i)

ii. Prosody-to-syntax mapping constraints
• AlignL(φ,XP): Assign one violation for every node of category

φ in the prosodic tree whose left edge is not aligned with the
left edge of a node of category XP in the syntactic tree.

• AlignR(φ,XP): Assign one violation for every node of category
φ in the prosodic tree whose right edge is not aligned with the
right edge of a node of category XP in the syntactic tree.

iii. Markedness constraints on surface prosody
• BinMin(φ,ω), defined in (17b.ii)
• BinMax(φ,branches), defined in (17b.ii)
• BinMax(φ,ω), defined in (17b.ii)

Gen.AspAps is the same as in the systems already discussed. The constraint
set contains four alignment constraints: the two syntax–prosody alignment con-
straints from S.MspAsp, and two prosody-syntax alignment constraints.1⁵ The
three binarity constraints from the previous systems are also included.

The factorial typology of S.AspAps contains thirty-four languages, but none of
these exhibit the Japanese pattern in (16). However, this system’s failure differs
from that of the pure Match system. With left- and right-alignment constraints,
there is no longer an Asymmetry Problem. Instead, a new problem arises, which
we call the Ambivalence Problem, illustrated in (28).

1⁵ The availability of prosody-syntax alignment alongside syntax–prosody alignment follows from
the theory of Generalized Alignment (McCarthy and Prince 1993). For analyses involving prosody-
syntax alignment, see Zerbian (2007) and Cheng and Downing (2016).
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(28) The Ambivalence Problem

Input
Winner

~ Loser
AlignL
(XP,φ)

AlignR
(XP,φ)

AlignL
(φ,XP)

AlignR
(φ,XP)

Bin
Max
(φ,ω)

Bin
Min
(φ,ω)

Bin
Max
(φ,branches)

e e e e e e ea. [A[[BC]D]] (A((BC)D))
~ ((A(BC))D)

b. [[A[BC]]D] ((A(BC))D)
~ (A((BC)D)) e e e e e e e

The Ambivalence Problem is the inability of this system to adjudicate between
matching andmismatching candidateswhen the input contains amedial two-word
XP, i.e., [XP BC]. Recall from (5b, c), schematized in (16), that in Japanese these
syntactic inputs are mapped to perfectly matching prosodic outputs. In S.AspAps,
no constraint distinguishes a mapping […[BC]…]→ (A((BC)D)), where the last
threewords form a constituent, from amapping […[BC]…]→ ((A(BC))D), where
the first three words form a constituent, as indicated by the “e” in every cell of the
ERCs in (28).

The binarity constraints do not distinguish (A((BC)D)) and ((A(BC))D), be-
cause these are mirror images of each other, and binarity constraints are not
sensitive to asymmetry. The forms in (28) both fully satisfy BinMax(φ,branches)
and BinMin(φ,ω), and both violate BinMax(φ,ω) twice: once for the four-word
φ, and once for the three-word φ.

The four alignment constraints, which can distinguish between left- and right-
branching in trees with only one level of embedding, are fully satisfied by all
four mappings: input→winner and input→loser in (28a), and input→winner and
input→loser in (28b). This is because in each input, words A and B are XP-initial
and XP-nonfinal, while words C and D are XP-final and XP-noninitial. Similarly,
in each input, A and B are φ-initial and φ-nonfinal, while C and D are φ-final
and φ-noninitial.Thus, every alignment constraint is perfectly satisfied. Every XP-
boundary is aligned with an appropriate φ-boundary, and vice versa. But what
of other constraints not included in Con.AspAps? Additional markedness con-
straints do not help. Just as in the purely Match-Theoretic system S.MspMps,
adding StrongStart or its hypothetical opposite StrongEnd to Con would not
solve the Ambivalence Problem either. Since the problem involves symmetric
structures, i.e., (28a) and (28b), asymmetric constraints cannot solve the problem.

Alignment-based theories of syntax–prosody mapping often also include a
constraint Wrap(XP), which states that every XP must be contained in a φ
(Truckenbrodt 1995, 1999). Wrap(XP) differs from Match(XP,φ) in that it does
not demand that every XP have a perfectly matching φ, but only that each XP
be entirely contained within a φ. For instance, while the mapping […A…[XP
BC]…D…] → (φ ABCD) violates Match(XP,φ), since XP has no matching φ, it
satisfies Wrap(XP), since all of XP is contained in a single φ. In a mapping like
[…A…[XP BC]…D…] → (φ AB)(φ CD), both Match(XP,φ) and Wrap(XP) are
violated. While Wrap(XP) is not an alignment constraint, the fact that it is often
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used alongside alignment constraints raises the question of whether adding it to
Con.AspApswould solve theAmbivalence Problem.The answer is thatWrap(XP)
would have no effect at all. Gen.AspAps is defined such that every candidate sat-
isfies Wrap(XP). Since every output candidate has a root node of category φ,
every input XP is wrapped in this maximal φ. So Wrap(XP) is unable to favor
[A[[BC]D]] → (A((BC)D)) over [A[[BC]D]] → *((A(BC))D) or [[A[BC]]D] →
((A(BC))D) over [[A[BC]]D]→ *(A((BC)D)).

Thus, the pure alignment system S.AspAps does not produce the Japanese pat-
tern, nor do we know of any existing constraints that could be added (other than
Match constraints) to solve theAmbivalence Problem. It is of course not unthink-
able that a completely new type of constraint could be invented, but we leave this
to potential pure alignment theorists.

15.7 Conclusion

We have shown that both Match and Align constraints are needed to account
for the rebracketing asymmetry in Japanese phonological phrasing. Systems with
Match but not Align run into an intractable Asymmetry Problem: it is not pos-
sible to map syntactic input structures to outputs that are not mirror images of
each other, as needed for Japanese four-word left-branching and right-branching
inputs. On the other hand, systems with Align but not Match face the Ambiva-
lence Problem, whereby certain deeply embedded syntactic constituents cannot
unambiguously map to isomorphic output constituents. Align constraints solve
Match’s Asymmetry Problem, since they distinguish between left and right edges,
and Match constraints solve Align’s Ambivalence Problem, since they favor
strict input-output isomorphism. Thus, a full theory of syntax–prosody mapping
in Optimality Theory requires both Match and Align. This discovery is notable
because Match and Align constraints are typically not used together in the same
analysis. The original conception of Match Theory in Selkirk (2011) was that it
would supplant Align Theory. However, this case study of Japanese phrasing re-
veals that the full range of syntax–prosody mappings can only be captured if both
constituent-oriented Match constraints and edge-oriented Align constraints
work together within the same system.

Why should Match and Align both be necessary? We suggest that the
two are in fact both motivated. Conceptually, syntax cares about constituents,
and therefore Match best reflects the demands of syntax-to-prosody mapping.
Phonology, on the other hand, cares about edges a great deal. Alignment con-
straints are not specific to the syntax–prosody interface, but are regularly used in
the analysis of footing, stress placement, reduplication, and other phonological or
morphophonological phenomena. We can understand constituent-based Match
constraints as representing the demands of syntax, and edge-based Align con-
straints as representing a phonological requirement. On this view, perhaps it is
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no longer surprising that both Match and Align would co-occur and interact to
represent the full range of syntax–prosody mappings.

The working system presented here included three mapping constraints,
Match(XP,φ), AlignL(XP,φ), and AlignR(XP,φ). All three of them enforce
syntax-to-prosody mappings. That is, the number of violations they assign is de-
termined by the number of syntactic objects that lack prosodic correspondents.
We presented this particular system for expositional clarity, since the syntax-to-
prosody mapping constraints are the most familiar and widely used. However, we
also tested ten additional systems that used the same markedness constraints but
varied in their mapping constraints. So many combinations were possible because
we included all possible combinations of the mapping constraints, and included
prosody-to-syntaxmapping constraints in addition to the syntax-to-prosodymap-
ping constraints. Prosody-to-syntax mapping constraints assign violations based
on the number of prosodic objects that lack syntactic correspondents, and have
been a part of Match Theory from its inception (Selkirk 2011). Here, the relevant
prosody-to-syntax constraint is Match(φ,XP), which is violated when the out-
put contains a phonological phrase that does not correspond to any XP in the
input—that is, when a φ has been “inserted” relative to the perfectly matching
candidate. This gives us four types of mapping constraints to consider: Match vs.
Align, and syntax-to-prosody (SP) vs. prosody-to-syntax (PS). Taking every pos-
sible combination of two or more of these types of mapping constraint produces
the combinations in (29a–k). In every system that included at least one Match
constraint and at least one Align constraint, the typology included a language
with the Japanese phrasing pattern. In contrast, as we have described, neither the
pure Match nor the pure Align system was able to generate the attested pattern
of Japanese phrasing.1⁶

1⁶ A reviewer asks whether similar results obtain if Con excludes right-alignment constraints of
the form AlignR(α,β), and allows only left-alignment constraints AlignL(α,β), pointing out that our
analysis of Japanese in S.MspAsp requires AlignL(XP,φ) but not AlignR(XP,φ), and that there are
precedents for proposing such a left-right asymmetry in other areas of phonology (Nelson 2003; Al-
ber 2005). Every system described in this table that involves AlignL(XP,φ) and at least one Match
constraint, i.e., (29a, b, d, e, f, h) would still account for the Japanese pattern if all right-alignment con-
straints were removed from Con. But systems that include prosody-to-syntax alignment constraints,
but not syntax-to-prosody alignment constraints, actually exhibit the reverse behavior; in systems (29c,
g, i), the alignment constraint needed for Japanese is AlignR(φ,XP), not AlignL(φ,XP). So an analysis
of Japanese needs either AlignL(XP,φ) or AlignR(φ,XP), plus a Match constraint.
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(29) Summary of the different systems examined

Match
(XP,φ)

Match
(φ,XP)

Align L/R
(XP,φ)

Align L/R
(φ,XP)

Languages in
Factorial
Typology

Typology contains
the Japanese
pattern?

a. ✓ ✓ ✓ ✓ 34 Yes
b. ✓ ✓ ✓ 20 Yes
c. ✓ ✓ ✓ 8 Yes
d. ✓ ✓ ✓ 34 Yes
e. ✓ ✓ ✓ 34 Yes
f. ✓ ✓ 14 Yes
g. ✓ ✓ 8 Yes
h. ✓ ✓ 20 Yes
i. ✓ ✓ 7 Yes
j. ✓ ✓ 4 No
k. ✓ ✓ 34 No

Given that ten out of the twelve systems here all succeed in representing the
Japanese phrasing pattern, a question arises as to which combination of Match
and Align is the most desirable. Including all four types of mapping constraints
in the same system works, but increases the size of the typology. On the other
hand, it is also problematic to exclude the prosody-to-syntax mapping constraints
altogether. This is particularly clear when we consider recent proposals to sub-
sumeMatchTheory under General CorrespondenceTheory in OptimalityTheory
(as Syntax-Prosody Max/Dep), as in Ito and Mester (2019a), cf. also the related
proposal in Selkirk’s (2017, 2019) serialist (two-stage) conception of prosodic
structure formation. From this perspective, leaving out prosody-to-syntax map-
ping constraints (as we did in Msp.Asp, Section 15.4) is as problematic as leaving
Max or Dep out of an analysis of syllable structure (see Gouskova 2007 for dis-
cussion). Without it, there is nothing to restrict insertion. We leave the question
open, noting only that many combinations of Match and Align are possible. A
detailed investigation of the different predictions of these combinations is a topic
for future research.

Our analysis of the Japanese data predicts that similar asymmetries would
occur in other languages. That is, we predict a language in which a four-word
right-branching syntactic structure [A[B[CD]]] should undergo rebracketing to
((AB)(CD)), while all other three- and four-word syntactic structures, includ-
ing strictly left-branching structures, should map to perfectly matching prosodic
outputs (L.3 in (18)). We are not currently aware of a case exactly like this, and
if none were ever found, this could suggest that the typology presented here is
symmetric in ways it should not be. However, it is at least possible for four-word
right-branching structures to rebracket in this way. In Irish, a sentence consisting
of a verb, a one-word subject, and a two-word direct object, [ΣP V [TP [NP S] [VP
[NP [NP N] [AP A]]]]], maps to a balanced structure (φ (φ V S) (φ N A)) (Elfner
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2012: 108). While this is suggestive, we leave for future research the question of
whether there are languages with the mirror image of the Japanese pattern, which
could inform the validity of the Match+Align analysis.

More broadly, we conclude that Optimality-Theoretic work on the syntax-
prosody interface (and other domains) requires consideration of all candidates
and all constraints as defined within a system. Leaving candidates out can result in
incorrect claims about typology and ranking, as has been the case for the Japanese
phrasing pattern at hand. Only with a fully defined OT system can we be certain
that our results in ranking and typology are sound, and the SPOT program has
been indispensable in exploring the properties of the system.
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